N-body partition function and equation of state of a classical interacting system
نویسندگان
چکیده
We consider the canonical partition function of a classical many-particle system interacting via a two-body inverse square interaction, as in the CalogeroSutherland-Moser model. Although the model is integrable both classically as well as quantum mechanically, the classical N -body canonical partition function has not been calculated to-date. We proceed to do this in this paper. The equation of state is then calculated both for the trapped and the homogeneous gas. Finally, the classical limit of Wu’s distribution function for fractional exclusion statistics is obtained and we re-derive the classical virial expansion of the homogeneous gas using this distribution function. PACS numbers: 03.65.Sq, 05.30.Pr Submitted to: J. Phys. A: Math. Gen. N-body partition function and equation of state of a classical interacting system 2
منابع مشابه
The virial expansion of a classical interacting system
We consider N particles interacting pair-wise by an inverse square potential in one dimension (Calogero-Sutherland-Moser model). When trapped harmonically, its classical canonical partition function for the repulsive regime is known in the literature. We start by presenting a concise re-derivation of this result. The equation of state is then calculated both for the trapped and the homogeneous ...
متن کاملمحاسبات توماس- فرمی برای تعیین خواص بحرانی ماده هستهای متقارن براساس رهیافت جرم مؤثر تعمیمیافته
Using mean-field and semi-classical approximation of Thomas-Fermi, within a statistical model, equation of state and critical properties of symmetric nuclear matter is studied. In this model, two body and phenomenological interaction of Myers and Swiatecki is used in phase space. By performing a functional variation of the total Helmholtz free energy of system with respect to the nucleonic di...
متن کاملبررسی ساختاری و ترمودینامیکی مایعات مولکولی مخلوط دوتایی مولکولهای بیضویگون با برهمکنش گی- برن
In this paper, a uniform classical fluid mixture comprising ellipsoidal molecules is studied. This mixture is composed of two types of ellipsoidal molecules interacting through the Gay-Berne potential with different sizes at temperature T. For this system, the Ornstein-Zernike equation using the Percus-Yevick closure relation is solved. Then the direct correlation function, pair correlation fu...
متن کاملSuper operator Technique in Investigation of the Dynamics of a Two Non-Interacting Qubit System Coupled to a Thermal Reservoir
In this paper, we clarify the applicability of the super operator technique for describing the dissipative quantum dynamics of a system consists of two qubits coupled with a thermal bath at finite temperature. By using super operator technique, we solve the master equation and find the matrix elements of the density operator. Considering the qubits to be initially prepared in a general mixed st...
متن کاملHydrogen Abstraction Reaction of Hydroxyl Radical with 1,1-Dibromoethane and 1,2-Dibromoethane Studied by Using Semi-Classical Transition State Theory
The hydrogen abstraction reaction by OH radical from CH2BrCH2Br (R1) and CH₃CHBr2 (R2) is investigated theoretically by semi-classical transition state theory. The stationary points for both reactions are located by using ωB97X-D and KMLYP density functional methods along with cc-pVTZ basis. Single-point energy calculations are performed at the QCISD(T) and CCSD(T) levels of theory with differe...
متن کامل